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ABSTRACT

Pulse Width Modulation (PWM) techniques are widely used in PV-operated, inverter-controlled AC motor 
drives. The frequency and magnitude of the voltage applied to the motors are controlled using PWM-
based PV-operated drives. PWM is the standard approach for operating the inverter in order to generate 
high quality output voltage. In past decades, the performance of the PWM techniques were determined 
using power factor, transient response and efficiency, which play a major role in the regulation of PWM 
inverters so that a dynamic response can be obtained in grid-connected facilities. Conventional PWM 
such as PWM, Sinusoidal PWM (SPWM) and Space-Vector PWM (SVPWM) perform satisfactorily 
in terms of average switching frequency requirement, switching losses and DC bus current ripple, with 
respect to driving AC induction motors. However, they have poor harmonic characteristics leading to 
degradation of torque and speed profile of AC motor. In order to overcome the aforementioned drawback, 
the proposed work investigated the harmonic contents of the mentioned PWM techniques, torque and 
speed profiles with regards to the AC drive applications. The simulation study revealed that the 2nd, 5th 
and 8th order (negative sequence) harmonics introduced more problems related to torque and the 4th and 
7th (positive sequence) harmonics created more heating problems. Further, the 3rd, 6th and 9th (zero 
sequence) harmonics caused heat due to addition of voltage and/or current in a neutral conductor. The 
main objective of the paper was to compare the three well established PWM methods with respect to the 
AC drive application in the context of effect of harmonics, by analysing their ease of implementation, 
output harmonic spectra voltage and Total Harmonic Distortion (THD).   

Keywords: AC motor, pulse width modulation, 
speed, torque, total harmonic distortion 

INTRODUCTION

Inverters are classified into two types, voltage 
source and current source inverters. A voltage-
fed inverter (VFI) or voltage-source inverter 
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(VSI) is one in which the DC source has small or negligible impedance and the input voltage 
is constant. A current-source inverter (CSI) is fed with adjustable current from the constant DC 
source of high impedance. A voltage source inverter employing thyristors as switches requires 
forced commutation, whereas VSIs using GTOs, power transistors, power MOSFETs or IGBTs 
can self-commutate by controlling base or gate drive signals.

Advances in solid-state power electronic devices, microprocessors and various inverter-
control techniques employing pulse-width-modulation (PWM) are increasing in PV-operated 
AC motor drive applications. The frequency and magnitude of the voltage applied to the motors 
are controlled using PWM-based PV-operated drives. Power supplies used in older computers, 
other recent appliances and compact fluorescent light bulbs can cause changes in sine waves as 
shown in Figure 1a. Usage of capacitive power appliances causes brief disturbances. Battery 
chargers are examples of capacitive loads and the disturbance is shown in Figure 1b. A large 
power consumer can put more load on the power grid so that voltage drops, as shown in Figure 
1c. Since inverters store electricity, they can be used to compensate for such disturbances 
(Industry Guide, 2013).
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Implementation of a full bridge inverter, which is a single stage DC to AC conversion 
topology, is quite often used in PV inverters. Gonzalez (2007) proposed a topology that 
generates no common-mode voltage that exhibits high efficiency and can operate with any 
power factor. QuanLi (2008) implemented different topologies in a PV Module Integrated 
Converter (MIC) based on DC link configurations that provided a useful framework and point of 
reference for the next generationof  MIC designs and applications. The increase in the number 
of pulses per half cycle, the order of dominant harmonic frequency can be raised and filtered 
out easily. Thus, an increase in switching frequency improves the quality of the output voltage 
waveform (Urmila Bandaru, 2011). PWM (Brundny, Szkudlapski, Morganti, & Lecointe, 
2015)  is the standard approach for operating an inverter in order to generate high quality 
output voltage. A PWM-based inverter is used to produce a controlled output current, which 
is in line with the utility voltage for obtaining a unity power factor (PF) for  grid-connected 
facilities. In past decades, the performance of PWM techniques were determined using power 
factor, transient response and efficiency, which play a major role in the regulation of PWM 
inverters so that a dynamic response can be obtained in grid-connected facilities (Rong-Jong 
Wai, 2008). Conventional PWM such as PWM, Sinusoidal PWM (SPWM) and Space-Vector 
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PWM (SVPWM) perform satisfactorily in terms of average switching frequency requirement, 
switching losses and DC bus current ripple, with respect to driving AC induction motors (Leon, 
Kouro, Franquelo, Rodriguez, & Wu, 2016).

An AC chopper controller with symmetrical Pulse Width Modulation (PWM) achieves 
better performance for a single-phase induction motor compared to phase-angle control line-
commutated voltage controllers and integral-cycle control of thyristors (Bashi, Mailah, & Cheng, 
2008). The reduced switching frequency active-harmonic elimination method to eliminate any 
number of specific order harmonics using an FPGA controller is experimentally verified (Zhong 
Du, Tolbert, Chiasson, & Burak Ozpineci, 2008). Selective harmonic elimination pulse width 
modulation offers tight control of the harmonic spectrum of a given voltage and/or current 
waveform generated by a power electronic converter. Owing to its formulation and focus on 
elimination of low-order harmonics, it is highly beneficial for high-power converters operating 
with low switching frequencies (Mohamed, Konstantinou, & Agelidis, 2015).

Conventional PWM such as PWM, Sinusoidal PWM (SPWM) and Space-Vector PWM 
(SVPWM) perform satisfactorily in terms of average switching frequency requirement, 
switching losses and DC bus current ripple, with respect to driving AC induction motors (Hari, 
Pavan Kumar VSSS & Narayanan, G., 2016). However, they have poor harmonic characteristics 
leading to degradation of torque and speed profile of AC motor. Further, it is suggested that 
such poor harmonic characteristics can be improved by doing harmonics analysis followed 
by a suitable mitigation process. In Wai (2008), the harmonic contents of PWM techniques, 
torque and speed profiles were analysed based on the AC drive applications. The authors also 
designed an adaptive total sliding-mode control system for the current control of the PWM 
inverter to maintain the output current with a higher power factor and less variation under 
load changes. The above-mentioned PWM techniques are compared by analysing their ease 
of implementation, output harmonic spectra of output voltage and Total Harmonic Distortion 
(THD). 

ANALYSIS OF DISCONTINUOUS PWM

The output pulses are considered as a vector (with values of 0 or 1) depending on the operating 
mode (generator/motor) of the machine the output vector contains. 
For the Arm 1 Bridge, two pulses are required: Pulse 1 is for the upper switch and Pulse 2 is 
for the lower switch. 

For the Arm 2 Bridge, four pulses are required: Pulses 1 and 3 are, respectively, for the 
upper switches of the first and second arm. Pulses 2 and 4 are for the lower switches. 

For the Arm 3 Bridge, six pulses are required: Pulses 1, 3 and 5 are, respectively, for the 
upper switches of the first, second and third arm. Pulses 2, 4 and 6 are for the lower switches. 

For the double Arm 3 Bridges, twelve pulses are required: The first six pulses (Pulses 1 to 
6) should be sent to the first Arm 3 bridge and the last six (Pulses 7 to 12) to the second Arm 
3 bridge. Figure 2 shows the block diagram for discontinuous PWM generation.
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In this work control over frequency, modulation index and phase of the output voltage is 
obtained by internally-generated signals. The width of the input vector is 1 for single phase 
bridges (Arm 1 or Arm 2) and 3 for three-phase bridges (single or double bridge). In this 
work the three power switches are controlled by a switching signal S, while the remaining 
three switches are controlled inversely (S-1).The switching signal is generated by the required 
voltage, Vr and the triangle reference voltage, VD. The switching frequency of the switches is 
constant and equals the frequency of the triangle voltage signal. The output voltage V0 is either 
Vdcor –Vdc. Figure 3a and Figure 3b show the stator voltage and current signals, respectively, 
obtained from the inverter based on DPWM.
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frequency of the triangle voltage signal. The output voltage V0 is either Vdcor –Vdc. Figure 3a and 

Figure 3b show the stator voltage and current signals, respectively, obtained from the inverter based 

on DPWM. 

 
Figure 3a. Stator voltage – DPWM scheme. 

 

 
Figure 3b. Stator current – DPWM scheme. 

 

In-rush current or the starting current is free for any load attached; however, inertia and load of 

the motor have to be considered when the motor is connected to a load. The larger the inertia, the 

longer will be the time taken to reach full speed. As the motor accelerates, part of the starting current 

overcomes this inertia and is converted to kinetic energy. The remaining power of the starting current 

heats the rotor, up to possibly 250 oC for a ‘long’ start (20 seconds). The current (I) is given by 

Equation [1] and Cos π is 0.3 during starting. 
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where P=Power and V=Voltage. 
Figure 4a and Figure 4b show the torque and speed characteristics of the motor when it is 

operated under the DPWM-based inverter. During the first couple of cycles of AC current, transient 

currents cause some of the phases to have higher asymmetrical values.  
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where s=Slip, E2=rotor voltage, X2=rotor reactance, ns=rotor speed in rps.  

Figure 3a. Stator voltage – DPWM scheme
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where s=Slip, E2=rotor voltage, X2=rotor reactance, ns=rotor speed in rps.  

Figure 3b. Stator current – DPWM scheme

In-rush current or the starting current is free for any load attached; however, inertia and 
load of the motor have to be considered when the motor is connected to a load. The larger the 
inertia, the longer will be the time taken to reach full speed. As the motor accelerates, part of 
the starting current overcomes this inertia and is converted to kinetic energy. The remaining 
power of the starting current heats the rotor, up to possibly 250°C for a ‘long’ start (20 seconds). 
The current (I) is given by Equation [1] and Cos π is 0.3 during starting.

                      [1]

where P=Power and V=Voltage.

Figure 4a and Figure 4b show the torque and speed characteristics of the motor when it 
is operated under the DPWM-based inverter. During the first couple of cycles of AC current, 
transient currents cause some of the phases to have higher asymmetrical values.
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Torque (T) is represented by Equation [2].

                     [2]

where s = Slip, E2 = rotor voltage, X2 = rotor reactance, ns = rotor speed in rps. 

9 
 

 
Figure 4a. Torque – DPWM scheme. 

 
Figure 4b. Speed – DPWM scheme. 

 

It is also observed from Figure 4a and Figure 4b that the basic criteria of torque speed relation 

are satisfied as torque is inversely proportional to speed. 

At s=1, the maximum starting torque occurs when rotor resistance equals rotor reactance. Total 

harmonics distortion analysis was carried out to find the harmonics present in voltage and the current 

applied to the machine when it is working under DPWM-based inverters. Figure 5a and Figure 5b 

show the THD values of harmonics content present in the voltage and current signals. 

    
Figure 5a. THD in the voltage – DPWM scheme.  

      

 
Figure 5b. THD in the current – DPWM scheme. 
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Figure 5b. THD in the current – DPWM scheme. 

 

Analysis of Sinusoidal PWM

The Sinusoidal Pulse Width Modulation (SPWM) technique is the most popular technique 
for reduction of harmonics in inverters. The three sine waves are each displaced at an angle 
of 120° phase difference and are used for a three-phase inverter. The width of each pulse is 
varied in proportion to the amplitude of a sine wave evaluated at the centre of the pulse. It 
is achieved by comparing the desired reference waveform (modulating signal) with a high-
frequency triangular wave. Depending on whether the signal voltage is larger or smaller than 
the carrier waveform, either the positive or negative DC bus voltage is applied at the output. 
Over the period of one triangle wave, the average voltage applied to the load is proportional 
to the amplitude of the signal during this period.

The SPWM technique uses constant amplitude pulses with different duty cycles. The pulse 
width is modulated to obtain inverter output voltage and helps to reduce its harmonic content. 
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In the SPWM technique three sine waves and a high frequency triangular carrier wave are 
used to generate a PWM signal.

Three reference sine waves each having an amplitude of 1V are generated with 00, 1200 
and 2400 phase differences. The carrier triangular wave is generated by integrating the sine 
wave with a gain of 6500 and these reference signals are compared with carrier triangular waves 
of amplitude 1V, while the modulation index is kept as 1. To generate 32 kHz of switching 
frequency, a gain of 6500 is considered in this work (Muhammed H. Rashid, 2004). Switching 
pulses are generated whenever the width of the reference signal is greater than the carrier signal 
and these pulses trigger the switches. 

The modulation process for generating pulses in SPWM is shown in Figure 6. The resulting 
wave is compared with the carrier signal using a relational operator, and it provides switching 
pulses for both the upper and lower switches.
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The unmodulated reference wave is again compared with the zero constant to eliminate 
negative halves and the result is multiplied with the total switching pulses to obtain the switching 
pulses for the upper switches and the inversion of the switching pulse of the upper switches is 
given to the switching pulse of the lower switches. The stator voltage, current, torque, speed 
and THD of the SPWM schema are obtained through simulation and shown in Figure 7a, 
Figure 7b, Figure 8a, Figure 8b, Figure 9a and Figure 9b, respectively.
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Analysis of Space Vector PWM

To implement the space vector PWM, the voltage equations in the abc reference frame is 
transformed into the stationary d-q reference frame that consists of the horizontal (d) and 
vertical (q) axes as shown in Figure 10 (Rait & Bhosale, 2011)
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Figure 9b. THD in the current – SPWM scheme. 
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U7= [111] corresponding to the switch states S0, S1, S2, S3 S4, S5, S6, S7, respectively. The length of 
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considered in the voltage-vector space.  
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The voltage-vector space is divided into six sectors. In the vector space, according to the 
equivalence principle, the following operation rules are applied to satisfy the basic criteria of 
space-vector representation as shown in Figure 11.
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The Pulse generation module of the SVPWM Scheme is shown in Figure 12.
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The angle of the reference vector and switching time frame for each switch are determined 
by Equations [4], [5] and [6].

       Vd =
2
3
(Va sinωt +Vb sin(ωt − 2π / 3)+Vc sin(ωt + 2π / 3))            [4]

       Vq =
2
3
(Va cosωt +Vb cos(ωt − 2π / 3)+Vc cos(ωt + 2π / 3))            [5]

       Vref =Vd + jVq                [6] 

The magnitude and phase angle of Vref is obtained by

       Vref = Vd
2 +Vq

2                [7]

Angle  α = tan−1 Vd
Vq

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟                 [8]

       T1 =
3Tz Vref
Vdc

sin n
3
π cosα − cos n

3
π sinα

⎛

⎝
⎜

⎞

⎠
⎟             [9]

       T2 =
3Tz Vref
Vdc

sinα cos n−1
3

π − cosα sin n−1
3

π
⎛

⎝
⎜

⎞

⎠
⎟           [10]



Analysis of PWM Techniques for Inverters Driving AC Motors

1219Pertanika J. Sci. & Technol. 25 (4): 1211 - 1222 (2017)

       T0 = Tz −T1 −T2              [11]

where n is the sector (1 to 6) and Tz is the switching time.
Like the previous schemes (DPWM, SPWM), stator voltage and current, torque and 

speed, voltage harmonics and current harmonics (IEEE Std 519-1992) are obtained through 
simulation as shown in Figure 13a, Figure 13b, Figure 14a, Figure 14b, Figure 15a and Figure 
15b, respectively.
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Figure 15b. THD in the current – SVPWM scheme. 
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The simulation study of the DPWM, SPWM and SVPWM schemes are were 

obtained and the simulation results are shown from Figure 1 to 15. In this work, it 

was observed from Figures 4a, 8a and 14a that at low speeds, torque was not smooth. 

This led to disturbance of torque-slip characteristics. This effect was due to the 

current harmonics, particularly odd harmonics.  
In Table 1, current and voltage harmonics are shown for all three schema. Further presence of 

even harmonics and odd harmonics with respect to fundamental frequency is shown in Table 2 and 

Table 3, respectively. From Table 1, 2 and 3 and from the simulation results it is evident that good 

torque i.e. speed profile for an AC drive application is maintained by the SVPWM, which allows less 

harmonics in output voltage and current signals. 
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THD 
DPWM 

(%) 

SPWM 

(%) 

SVPWM 

(%) 

Current 

Harmonics 
19.52 19.31 0.86 

Voltage 

Harmonics 
86.68 50.68 51.51 

Comparative Analysis

The simulation study of the DPWM, SPWM and SVPWM schemes are were obtained and the 
simulation results are shown from Figure 1 to 15. In this work, it was observed from Figures 
4a, 8a and 14a that at low speeds, torque was not smooth. This led to disturbance of torque-
slip characteristics. This effect was due to the current harmonics, particularly odd harmonics. 

In Table 1, current and voltage harmonics are shown for all three schema. Further presence 
of even harmonics and odd harmonics with respect to fundamental frequency is shown in Table 
2 and Table 3, respectively. From Table 1, 2 and 3 and from the simulation results it is evident 
that good torque i.e. speed profile for an AC drive application is maintained by the SVPWM, 
which allows less harmonics in output voltage and current signals.
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The comparative study showed that the SVPWM has advantages of lower harmonics 
and a higher modulation index compared with other PWM techniques. Because of its flexible 
manipulation of reference vector and modulation index, it is easy for complete digital 
implementation by a single chip microprocessor. Therefore, it is recommended that the 
SVPWM be used in motor control and power-converter applications. SVPWM is good with 
respect to minimum uncharacteristic harmonics compared with other modulation techniques 
such as conventional PWM and SPWM. However, each modulation technique is unique to the 
application for which it is employed.

CONCLUSION AND FUTURE WORK

In this paper, the harmonic contents of the PWM, SPWM and SVPWM techniques, torque and 
speed profiles were investigated with regard to AC drive applications. The output harmonic 
spectra of output voltage and THD were analysed for the mentioned PWM techniques. A 
simulation study revealed that negative sequence harmonics introduced more problems 
related to torque and positive sequence harmonics created more heating problems. Further, 
zero sequence harmonics caused heat due to addition of voltage and/or current in a neutral 
conductor. From the simulation results, it was clear to see that the torque and speed profiles 
were completely unique for each modulation technique with respect to load (AC drives). 

This work can be extended for all other types of load such as simple RLC and also all 
other industrial loads. This paper can be used as a guide for analysing the inverter in distributed 
energy resources that are integrated into the public power supply (grid) inputs. The various 
demands on inverters’ effective operation are required for the grid as it requires sinusoidal 
alternating current (AC) with stable voltage and frequency and the harmonic component limits 
are regulated within the guidelines and standards. Modern inverters meet these power quality 

Table 1 
Analysis of THD  

THD DPWM (%) SPWM (%) SVPWM (%)
Current Harmonics 19.52 19.31 0.86
Voltage Harmonics 86.68 50.68 51.51

Table 2 
Analysis of Even Harmonics  

Even Harmonics (% of fundamental)
Order of 
harmonic

PWM SPWM SVPWM

2 45 28 35
4 16 10 12
6 10 7 15
8 8 5 6
10 8 4 4.8

Table 3 
Analysis of Odd Harmonics  

Odd Harmonics (% of fundamental)
Order of 
harmonic

PWM SPWM SVPWM

3 28 12 22

5 12 7.5 10
7 8 5.5 5.5
9 7.5 4.2 5.5
11 6 3.8 4
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requirements, yet in some cases limits may be exceeded. Therefore, distributed generation is 
heavily dependent on the reliability and efficiency of the inverter. 
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